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We extend the multiscale finite element viscosity method for hyperbolic conservation laws developed in terms
of hierarchical finite element bases to a (pre-orthogonal spline-)wavelet basis. Depending on an appropriate
error criterion, the multiscale framework allows for a controlled adaptive resolution of discontinuities of
the solution. The nonlinearity in the weak form is treated by solving a least-squares data fitting problem.
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I. INTRODUCTION

Consider Burgers’ equation with periodic boundary conditions and given initial condition g,

∂u

∂t
+ ∂

∂x

(
u2

2

)
= 0 on �T := (0, 1) × (0, T ),

u(0, t) = u(1, t) in (0, T ),
u(x, 0) = g(x) in (a, b) ⊂ IR, (1.1)

which was introduced as a simplified model for inviscid fluid flow. Because of the nonlinearity,
its solution is known to develop isolated discontinuities after finite time.

Discretization schemes for the Burgers’ equation based on the classical type of weak formu-
lations that are standard for elliptic partial differential equations (PDEs) cause strong numerical
instabilities. One can stabilize such methods by adding an artificial diffusion term to the equation.
However, this procedure usually results in a “smearing out” of problem-inherent discontinuities
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and leads to a great sacrifice in accuracy, even in regions where the solution is smooth. Much better
results are attained by spectral viscosity methods in which diffusion is added only to the highest
frequencies; see [1] and the series of articles that followed. The method was extended in [3] to a
multiscale finite element formalism in terms of hierarchical finite element bases [2]. In the spirit
of spectral viscosity methods, artificial diffusion is added only at the highest hierarchical levels.
Convergence to the entropy solution was proved for the scalar univariate case. A discussion about
the efficient implementation of the multiscale finite element viscosity method and examples in
two space dimensions can be found in [4]. Moreover, it was demonstrated numerically in [3–5]
that, in practice, regularization can be restricted to the highest hierarchical level.

The results in [3–5] were obtained employing hierarchical finite element bases with respect to
a uniform grid. Here, we adapt the formulation of [3,5] to construct a converging wavelet-based
method to numerically solve Burgers’ equation. We will then apply an elementary smoothing on
the solution based on elementary properties of a wavelet-specific detection of singularities.

We note that a similar frequency-dependent artificial viscosity method was used introduced in
[6] for slightly viscous, convection dominated problems and further developed and analyzed in
[7].

Adaptive schemes that are capable of concentrating degrees of freedom in the neighborhood
of discontinuities provide a particular high potential for efficient numerical solution. Thus, after
studying the quality attainable in the wavelet formulation with respect to a uniform grid, we will
turn our attention to its efficiency by proposing and testing an adaptive algorithm that concentrates
the degrees of freedom only in the neighborhood of singularities, following them as they evolves
with time. Specifically, diffusion is added only in the vicinity of discontinuities.

We describe our scheme in terms of a class of piecewise linear continuous spline-wavelets. We
note that, in principle, an extension to higher-order spline-wavelets is possible, but, of course, at
the expense of a corresponding larger support.

We also note that different types of adaptive wavelet methods for solving time-dependent PDEs
have been developed in the past; see, e.g., [8]. For the treatment of shocks, see, in particular, [9].

The remainder of the article is organized as follows. In the next section, we describe the class of
spline-wavelets used here. This is followed in Section III by the description of a wavelet viscosity
method together with convergence results. In Section IV, we study, through numerical experi-
mentation, how singularities can be easily detected by wavelets; this should be contrasted to the
case of spectral methods for which such detection is much more difficult. Section V describes
an adaptive wavelet viscosity scheme, adding viscosity only in the vicinity of a discontinuity; in
this way, selective application of artificial diffusion is effected with respect to both the frequency
and spatial domains. Finally, in Section VI, we describe how nonlinearities are evaluated in our
scheme by means of a least-squares approach developed in [10] in the context of scattered data
fitting problems.

Throughout this article, we use the relation A ∼ B to express A <∼ B and A >∼ B, which
means that A can be estimated from above and below by a constant multiple of B, independent
of all parameters on which A or B may depend.

II. SOME BASICS ABOUT WAVELETS

Fundamental to the method described below are appropriate wavelet bases for a function space
H ⊆ L2(�) living on a bounded domain � ⊂ IRd and possessing certain properties essential
for the efficient numerical solution of PDEs; see, e.g., [11, 12] and references therein for such
constructions. Wavelets are indexed by a parameter λ = (j , k, e) which encodes information such
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1390 DÍEZ, GUNZBURGER, AND KUNOTH

as the resolution level or scale |λ| := j , the spatial location k, and possibly the type e of wavelet
in the multivariate case. For univariate domains � = (a, b), the indices are simply of the form
λ = (j , k). In view of the finite domain �, there is a coarsest level j0. We denote the infinite set
of all possible indices by II . A wavelet basis is a collection of functions

� := {ψλ : λ ∈ II } ⊂ H (2.1)

having the following properties:

(R) � constitutes a Riesz basis for H : every v ∈ H has a unique expansion in terms of �,

v =
∑
λ∈II

vλψλ, v := (vλ)λ∈II , (2.2)

and its expansion coefficients satisfy a norm equivalence relation, i.e., there exist constants
0 < cH ≤ CH < ∞ such that

cH‖v‖�2(II ) ≤
∥∥∥∥∥
∑
λ∈II

vλψλ

∥∥∥∥∥
H

≤ CH‖v‖�2(II ), v ∈ �2(II ), (2.3)

holds. In other words, wavelet expansions induce isomorphisms between the space of
functions H and the sequence space �2(II ).

(L) The functions ψλ are local: for each λ ∈ II one has

diam(supp ψλ) ∼ 2−|λ|. (2.4)

(CP) There exists an integer m̃ such that

〈v, ψλ〉 <∼ 2−|λ|(d/2+m̃)|v|Wm̃∞(supp ψλ), (2.5)

where 〈·, ·〉 is the duality pairing between H and its topological dual H ′.

Property (CP) means that integrating a function against a wavelet is like taking an m̃th order
difference which annihilates the smooth part of v. This feature is called the cancellation property
and comes into play for the evaluation of nonlinearities. Moreover, the underlying moment condi-
tions entail a direct approximation estimate for a finite-dimensional subspace VJ that is spanned
by all wavelet functions up to a highest refinement level J .

Properties (R), (L), and (CP) allow one to prove strong theoretical statements such as (asymp-
totically) optimal condition number estimates for linear elliptic operators or convergence results
for adaptive methods for linear and nonlinear variational problems [12–15]. At the same time,
they still allow one to work computationally with piecewise polynomials. Remarks on the concrete
constructions of biorthogonal wavelet bases on bounded Euclidean tensor product domains based
on B–Splines can be found in [12]. Constructions on multivariate box domains can be handled
by tensor products. For more general domains or manifolds, see the constructions in [16] and
references cited therein.

Here we employ the piecewise linear boundary–adapted B–spline pre–wavelets from [17] that
are a special case of the pre–wavelets on the interval constructed in [18]. These bases have the
additional property that they are
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(O) semi–orthogonal with respect to L2(�), that is, for |λ| �= |µ|, one has∫
�

ψλ(x)ψµ(x)dx = 0. (2.6)

Consequently, entries of mass matrices corresponding to wavelets on different refinement levels
vanish.

III. A WAVELET VISCOSITY METHOD

First, we recall the main result obtained in [3, 5] about the convergence of approximations to
the solution of (1.1) constructed using uniform grid hierarchical finite element bases. In the
monovariate case, the ansatz function of the approach can be written as

uJ (x, t) =
∑
λ∈�J

dhb
λ (t)ψhb

λ (x), (3.1)

where {ψhb
λ }λ∈�J

is the hierarchical basis for the space VJ of continuous piecewise linear functions
on each subinterval 2−j [i, i + 1] for i = 0, . . . , 2j − 1.

The hierarchical basis approximation of (1.1) is thus given by a uJ (x, t) ∈ VJ such that
uJ (·, 0) = gJ for some projection gJ of g onto VJ that solves the regularized weak formulation
of (1.1) with respect to space

∫ 1

0

[
∂uJ

∂t
+ ∂

∂x

(
u2

J

2

)]
vdx + νJ

∫ 1

0

[
∂

∂x

(
Q

jcut
J uJ

)∂v

∂x

]
dx = 0 (3.2)

for every v ∈ VJ . Here, νJ is an artificial viscosity parameter and the operator Q
jcut
J eliminates

the components whose scale is smaller than jcut, i.e.,

Q
jcut
J


∑

λ∈�J

dhb
λ ψhb

λ


 :=

∑
λ∈�J ,|λ|≥jcut

dhb
λ ψhb

λ . (3.3)

With these ingredients, we can state the following convergence result. We note that the assump-
tion that the sequence of approximate solutions remains uniformly bounded is also invoked
for frequency-dependent artificial viscosity methods in the spectral and finite element methods
settings; see [1] and [3], respectively.

Theorem 3.1. [3] Let {uJ }∞
J=j0

denote a sequence of hierarchical basis approximations
determined by (3.2). Assume that uJ is uniformly bounded in L∞(�T ) and that

νJ → 0 as J → ∞, (3.4)

νJ
>∼ 2−J , (3.5)

√
νJ

∥∥∥∥ ∂

∂x
[(I − QJ )uJ ]

∥∥∥∥
L2(0,1)

<∼ ‖uJ ‖L2(0,1), (3.6)
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√
νJ

∥∥∥∥ ∂

∂x

[
(I − QJ )

∂uJ

∂t

]∥∥∥∥
L2(0,1)

<∼
∥∥∥∥∂uJ

∂t

∥∥∥∥
L2(0,1)

, (3.7)

∥∥∥∥ d

dx
(QJ gJ )

∥∥∥∥
L2(0,1)

<∼
∥∥∥∥dgJ

dx

∥∥∥∥
L2(0,1)

. (3.8)

Then, there exists a subsequence of {uJ }∞
J=j0

that converges strongly in L2(�T ) to a solution
u ∈ L2(�T ) of (1.1).

In the full grid approximation, the convergence result expressed in Theorem 3.1 is directly
applicable to a wavelet formulation. We expand the solution uJ to (3.2) as

uJ (x, t) =
∑
λ∈�J

dλ(t)ψλ(x), (3.9)

where {ψλ}λ∈�J
, �J ⊂ II , is the linear spline–wavelet basis of VJ ⊂ L2(a, b), consisting of all

wavelets ψλ on all levels j0 ≤ |λ| ≤ J . (With abuse of notation, we use here the same symbol
�J as in (3.1) to denote the corresponding finite-dimensional index set.)

The operator Q
jcut
J that kills oscillations on scales smaller than jcut has the same form as in

(3.3),

Q
jcut
J


∑

λ∈�J

dλψλ(x)


 =

∑
λ∈�J ,|λ|≥jcut

dλψλ(x). (3.10)

Particularly, we can make a simple choice of parameters that guarantees asymptotic convergence
of the (Petrov-)Galerkin method in the wavelet basis.

Proposition 3.2. With the choices νJ ∼ 2−J and jcut ≤ J

2 , the assumptions (3.4) to (3.8) for a
function uJ of the form (3.9) satisfying the regularized weak formulation (3.1) are met.

Proof. The properties for the continuous hierarchical piecewise linear basis {ψhb
λ }λ∈�J

estab-
lished in [3] directly carry over to the case of semi-orthogonal linear spline-wavelets {ψλ}λ∈�J

since they provide in the finite-dimensional case on a uniform grid a basis for the same space VJ .
For convenience, we include alternative and simpler proofs that take advantage of property

(R). For all v ∈ VJ , we have

(
I − Q

jcut
J

)
v =

∑
λ∈�,|λ|<jcut

dλψλ.

Since ∑
λ∈�,|λ|<jcut

|dλ|2 ≤
∑
λ∈�

|dλ|2,

by the Riesz property
∑

λ∈II |wλ|2 ∼ ‖w‖2
L2(0,1) that holds for any w = ∑

λ∈II wλψλ, we can write

∥∥(
I − Q

jcut
J

)
v
∥∥

L2(0,1)
<∼ ‖v‖L2(0,1). (3.11)

Numerical Methods for Partial Differential Equations DOI 10.1002/num



AN ADAPTIVE WAVELET VISCOSITY METHOD 1393

Now, (I − Q
jcut
J )v is linear on intervals of length 2−(jcut+1) so that∥∥∥∥ ∂

∂x

[(
I − Q

jcut
J

)
v
]∥∥∥∥

L2(0,1)

<∼ 2jcut
∥∥(

I − Q
jcut
J

)
v
∥∥

L2(0,1)
.

Multiplying by 2−J/2 and using (3.11), we have

2− J
2

∥∥∥∥ ∂

∂x

[(
I − Q

jcut
J

)
v
]∥∥∥∥

L2(0,1)

<∼ 2− J
2 +jcut‖v‖L2(0,1).

Since we have chosen jcut ≤ J

2 , taking v ∈ {uJ , ∂uJ

∂t
}, conditions (3.6) and (3.7) are satisfied.

Finally, (3.8) is a consequence of the Riesz-Basis property on H 1(0, 1).

IV. NUMERICAL EXPERIMENTS – THE FULL-GRID CASE

A. Smoothing of Gibbs Phenomenon

As a model problem, consider the following form of Burgers’ equation (1.1) with a particular set
of boundary and smooth initial conditions:

∂u

∂t
+ ∂

∂t

(
u2

2

)
= 0 on (0, 1) × (0, T ),

u(0, t) = u(1, t) for all t ∈ (0, T ),
u(x, 0) = sin(2πx) for x ∈ (0, 1), (4.1)

that gives rise to a stationary shock. As time increases, the derivative of u grows larger in a
decreasing neighborhood of x = 0.5, eventually developing a sharp jump. After this singularity
is formed, the amplitude of the solution starts to decrease.

We have computed an approximate solution using a slight modification, with respect to bound-
ary conditions, of our (preorthogonal spline–)wavelets described earlier. To satisfy the periodicity
conditions, we have substituted the boundary adaption with a periodization of the basis ensuring
that ψλ(0) = ψλ(1) for all λ ∈ �J . We have used the full grid when we increase the maximal
level of resolution J at time t = 0.5 for which the sharp shock has been formed and is about to
start reducing in amplitude.

As expected, numerical instabilities appear if no viscosity is added (see Fig. 1) and the scheme
does not converge when only refining the ansatz space. Applying the results from Section III, we

FIG. 1. Wavelet solutions for the stationary shock problem (4.1) using different resolutions (J = 8, 9, 10
from left to right) without applying artificial diffusion. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]
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1394 DÍEZ, GUNZBURGER, AND KUNOTH

FIG. 2. Wavelet solutions for the stationary shock problem (4.1) using different resolutions. At each res-
olution J , a jcut that meets the requirements of Theorem 3.1 for convergence of the Galerkin method is
applied: from left to right, jcut = 3 for J = 8; jcut = 4 for J = 9, and jcut = 5 for J = 10. [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com.]

can ensure convergence if viscosity is added at least to the upper J/2 levels of a discretization
with a maximal level of resolution J . This is confirmed by the results in Fig. 2.

An important point is that the frequency-restricted wavelet viscosity method operates beyond
the convergence results from Section III. In fact, the numerical results displayed in Fig. 3 show
that adding viscosity only to the highest resolution level suffices to already stabilize the com-
puted solution. This yields better accuracy away from the singularity, as less artificial diffusion
is introduced into the original problem. However, an oscillation due to the Gibbs phenomenon
concentrated around the singularity presents itself. Although its support decreases as we improve
the resolution, this artifact remains for every J .

B. Wavelets and Singularities

The description and detection of singularities by wavelet analyses has been envisaged by numer-
ous authors since their introduction in the late 80 s. Typical results relate the local Hölder,
Lipschitz, or Besov regularity of a function with the decay across scales of its local wavelet
coordinates.

To assess the qualitative behavior to which one should compare the behavior of coefficients of
the reconstructions in Fig. 3, we briefly provide an example of the representation of a discontinuous
function in terms of the wavelet basis that we are using. This will help us to disentangle the effects
of the discontinuity from the effects of the Gibbs phenomenon by inspecting the coefficients in
the proximity of the jump at x = 0.5.

FIG. 3. Wavelet solutions for the stationary shock problem (4.1) using different resolutions. Artificial
viscosity is applied only at the maximal resolution level: from left to right, jcut = 8 for J = 8; jcut = 9
for J = 9 and jcut = 10 for J = 10. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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FIG. 4. Behavior of the wavelet coefficients of a given level (j = 10) across a discontinuity for the func-
tion f (x) given in (4.1). Left: behavior of | ∫ 1

0 f (x)ψj ,k(x)dx| against k at level j = 10. Right: behavior
of |dj ,k| against k at level j = 10. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

To study the decay profile of wavelet coefficients across a singularity, let f be a linear function
having a single jump discontinuity located at x0 = 1/2, i.e.,

f (x) =
{

x, x ≤ x0,
x − 1, x > x0.

(4.1)

We denote its wavelet expansion by

f (x) =
∑

j≥j0;k=0,...,2j −1

dj ,kψj ,k(x). (4.2)

In view of the preorthogonal spline–wavelets employed here, the L2(0, 1) scalar product of this
function with all wavelets from level j vanish on each level except for the two wavelets whose
supports include the point x0 = 1/2; see the left plot in Fig. 4 for the case j = 10. Taking scalar
products in L2 of (4.1) with each wavelet on level j ′, we obtain

(f , ψj ′ ,k′)L2(0,1) =
∑

j≥j0;k=0,...,2j −1

dj ,k(ψj ,k , ψj ′ ,k′)L2(0,1), k′ = 0, . . . , 2j ′ − 1. (4.3)

One can now solve for the wavelet coefficients {dj ′ ,k}k=0,...,2j ′−1 of the expansion in (4.2) and obtain
the right plot in Fig. 4. Note that multiplication of the wavelet coefficients by the entries of the
mass matrix (ψj ,k , ψj ′ ,k′)L2(0,1) introduces a smooth decay.

C. Postprocessing

An elementary smoothing technique applied for the reduction of Gibbs artifacts on the basis of
(preorthogonal spline–)wavelets is described as follows: identify the spatial areas in which this
phenomenon is active, eliminate the responsible wavelet coefficients, and recompute the remain-
ing ones. This identification is based on the inspection of the decay of the wavelet coefficients at
each scale, as represented in Fig. 5. The shape of the decay plot of the wavelet coefficients |dj ,k|
Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 5. Decay of wavelet coefficients on the last four levels before any smoothing technique is applied;
j = 7, 8, 9, 10 from left to right. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

vs. k for levels j = 7, j = 8, and j = 9 is similar to the decay shown by the wavelet coeffi-
cients representing the discontinuous function f (x) defined in (4.1) that has a similar singularity.
In contrast to this, the decay of |d10,k| at level j = 10 across k is qualitatively different: since
it is too wide, it does not match the decay expected from a “clean” discontinuity as seen in the
example from Section B.

Let us denote by �Gibbs the set of indices of wavelets whose coefficients appear to be affected
by the Gibbs phenomenon. The decay across k of the wavelet coefficients signals an energy
concentration along an extended interval

IGibbs :=
⋃

λ∈�Gibbs

supp ψλ.

We assume that this interval marks approximately the support of the artifact and that the recon-
struction on this interval is henceforth of no use. Now, one simply performs a local smooth
re-sampling of the signal using only points lying outside IGibbs and computes the wavelet coeffi-
cients with respect to this new resampling. A possible choice is X

(m)

� /X
(m)

�Gibbs
for any m > 0, �

being the original wavelet configuration. The right plot in Fig. 6 shows the reconstruction attained
by this elementary technique for the solution of highest resolution in Figure 3. Figure 7 shows
that this strategy yields different results from those obtained by simply discarding the coefficients
of the higher, offending scales: the coefficients on levels j = 9, 10 do indeed disappear (and

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 6. Smoothing the approximate solution for level J = 10 for the stationary shock (4.1); left: without
smoothing; right: with smoothing. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

they are not depicted), but also the coefficients of the remaining levels are changed. In fact, if
one just threw out wavelet coefficients corresponding to the higher scales, one would just end
up rescaling the Gibbs phenomenon and getting a wider IGibbs; see Fig. 3. Thus, we see that the
Gibbs phenomenon is not located exclusively on the two upper levels (j = 9, 10). It leaks down
through the lower scales. The correction is therefore stronger for higher levels and fades away as
we move down in the dyadic scale of resolution; compare the plots for j = 5 and j = 8.

Obviously, this procedure decreases the sharpness of the peak: the final resolution in the exam-
ple is j = 8 after postprocessing. This does not mean, however, that the work done to resolve the
discontinuity at level j = 10 is lost. In fact, if we started with a signal resolved at level j = 8,
the smoothing would not take into account the information coming from the two last levels and
we would just produce a rescaled version of the Gibbs phenomenon.

Starting with a given finest level j , if one wishes to suppress the artifacts and simultaneously
wishes to keep a sharp resolution of the discontinuity up to some level, one would need more
involved techniques. Among these are powerful strategies drawn from the image processing com-
munity such as the minimization of the total variation [19,20] and the footprint location method
[21] that are aimed at squeezing out the last drop of information from the given set of avail-

able points. In the present context, one could gain additional information by producing solutions
of higher resolution by locally adding degrees of freedom; we will consider this approach in
Section V.

The postprocessing technique carries over to singularities arising in other situations. The
following problem develops a sharp shock that travels from left to right:

∂u

∂t
+ ∂

∂t

(
u2

2

)
= 0 on (0, 1) × (0, T ),

u(0, t) = u(1, t) for all t ∈ (0, T ),
u(x, 0) = 1 + 1

2 sin(π(2x − 1)) for x ∈ (0, 1). (4.5)

This example was used in [3]; its exact solution is implicitly given by solving a nonlinear equa-
tion [5]. The numerical solution is computed here with (preorthogonal spline–)wavelets with
respect to a uniform discretization and the explicit Euler method for time discretization that

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 7. Decay of the coefficients on the last four levels after smoothing compared to their original val-
ues; j = 5, 6, 7, 8 from left to right. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

yields qualitatively the same results as more involved schemes provided that the time step is small
enough.

Figure 8 shows the instabilities that appear in absence of artificial viscosity. The results at time
t = 0.5 using artificial diffusion on only finest level are displayed in Fig. 9 for different values of
J , illustrating the convergence of the method as the resolution level increases.

V. AN ADAPTIVE WAVELET VISCOSITY SCHEME

Although the convergence results of Section III apply for a full-grid discretization, we have found
that spatially adaptive schemes also benefit from the frequency-selective addition of artificial
viscosity. We have, in fact, implemented a slight modification of the adaptive algorithm proposed
in [8]. The approximation of the solution u(mδt , ·) at time m δt is given by um = ∑

λ∈�m dm
λ ψλ.

The configuration �m is updated by a dynamically adaptive scheme, and the time evolution is
computed by a second-order Adams-Bashforth scheme.

The selection of indices that participate in the refinement step proceeds in two sequential
stages. First, since the configuration at the next time step may require wavelets of a higher level,
one adds all children of the currently chosen wavelet indices. Recall that in one spatial dimen-
sion, a wavelet indexed by (j , k) is called a child of a wavelet indexed by (j ′, k′) if j = j ′ + 1
and k ∈ {2k′, 2k′ + 1}, and correspondingly in the multivariate case. In the second stage, this

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 8. Instabilities arising at time T = 0.5 in the absence of artificial viscosity when solving the trav-
eling shock problem for J = 10. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

index set is further extended by also including the horizontal neighbors of the wavelet indices
already included. We then define the following algorithm that includes a coarsening step based
on thresholding the latest available wavelet coefficients.

Algorithm 5.1. [Adaptive Wavelet-Galerkin Scheme] Fix a threshold ε(j) dependent on the
resolution level. Given an initial solution u0 expanded in terms of wavelets relative to some index

FIG. 9. Wavelet solution with the full grid for the traveling shock problem. The upper row shows the results
at T = 0.5 for different resolution levels j = 8, 9, 10 from left to right. The lower row shows the results
after smoothing, compared to the exact solution. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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set �̃0, define �0 by thresholding �̃0, i.e. �0 := {λ ∈ �̃0 : |dλ| > ε(0)}. Then, for each m = 0, . . .,
perform the following steps.

(1) Refinement
(a) Vertical Expansion: construct a set �m

v containing the wavelet indices in �m and all their
children.

(b) Horizontal Expansion: form

�̃m+1 := {
λ = (j , k) such that (j , k′) ∈ �m

v , k′ ∈ {k − 2, k − 1, k, k + 1, k + 2}}.

(2) Computation of approximate solution: compute

um+1 =
∑

λ∈�̃m+1

dm+1
λ ψλ (5.1)

that solves(
1

τ
(um+1 − um) + 1

2

∂

∂x

(
um

∗
)2

, ψλ

)
= −ν

(
∂

∂x
QJ

(
um

∗
)
,

∂

∂x
ψλ

)
for λ ∈ �̃m+1, (5.2)

with um
∗ = 3

2u
m − 1

2u
m−1 (with um

∗ = um for m = 0).
(3) Coarsening: compute �m+1 by thresholding �̃m+1 to obtain

�m+1 := {λ ∈ �̃m+1 : |dλ| > ε(|λ|)}. (5.3)

To illustrate the performance of this algorithm, we have solved Burgers’ equation for the two
different initial conditions introduced in Section IV. In both cases, the following parameter set
has been used: Jmax = 10, ν = 2−(Jmax−1), ε(j) = 10−6 · 2−j . The artificial viscosity acts only on
the elements with j > 6. The results are shown in Fig. 10 for the stationary shock problem and in
Fig. 11 for the traveling shock problem. In the top rows, the configuration of the wavelet coeffi-
cients is displayed, exhibiting their spatial distribution over the x-axis. The vertical axis shows the

FIG. 10. Top row: evolution of the wavelet configuration selected by the adaptive method applied to
the stationary shock problem (4.1) for t = 0, 0.12, 0.24, 1.17 from left to right. Bottom row: the corre-
sponding approximate solutions. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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FIG. 11. Top row: evolution of the wavelet configuration selected by the adaptive method applied to the
traveling shock problem (4.4) for times t = 0, 0.28, 0.39, 0.78 from left to right. Bottom row: the cor-
responding approximate solutions. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

refinement level j with increasing value from bottom to top. Darker colors of the boxes refer to
higher absolute and, therefore, more important values of the corresponding wavelet coefficients.
To compare with the solutions on the full uniform grid displayed in Section IV, no postprocessing
has been applied.

We see that in both cases the scheme appears to perfectly capture the dynamics of the solution.
The initial wavelet structure expands itself to resolve the forming shock as the method selects
wavelets in the neighborhood of the developing discontinuity. The prescribed thresholding policy
prevents the method from accumulating wavelets of resolution higher than level j = 8. For the
stationary shock example, the discontinuity remains fixed at x = 0.5 and reduces in size, leading
to a simplification of the wavelet structure as time increases. For the case of the traveling shock,
the wavelet structure travels with the shock. These examples show that numerical instabilities do
indeed disappear.

VI. EVALUATION OF NONLINEARITIES

Up to this point, we have not specified how the nonlinear term in (5.2) is computed in terms
of adaptive spline-wavelets. To this end, we have employed a least-squares approach to eval-
uate nonlinearities described in [10] for which the Burgers’ problem provides an interesting
benchmark.

The task at hand is to evaluate nonlinear terms of the form {〈ψλ, G(u)〉}λ∈�, where u is a
known function which can be expressed as a finite linear combination of wavelets, or, equiva-
lently, as a vector u, with � being a given set of wavelet indices. If the wavelet representation of
G(u) = ∑

λ∈II gλψλ, or g := {gλ}λ∈II in vector form, is known, this would allow for the evaluation
of G(u) exactly by noting that

∫ 1

0
G(u(x))ψλ(x)dx =

∑
λ′∈II

gλ′
∫ 1

0
ψλ′(x)ψλ(x)dx =

∑
λ′∈II

gλ′Mλ,λ′ , (6.1)
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where Mλ,λ′ are the entries of the mass matrix M. Then, we would simply solve

G(u) = Mg (6.2)

for g. In principle, infinitely many wavelets are needed to represent G(u) exactly. However, we
are interested only in those wavelets that are not orthogonal, with respect to L2, to the wavelets
indexed by the given set �, as only they can contribute to (6.1). Thus, we can work with a maximal
set of indexes �� := � ∪ ∂�. Here, ∂� stands for the set of indices of those wavelets that are
not orthogonal to the ones indexed by �. For preorthogonal wavelets in L2, ∂� includes just the
neighbors on the same resolution level of the wavelets in �, i.e.,

∂� = {λ ∈ II : ∃λ′ ∈ � such that |λ| = |λ′|, supp ψλ ∩ supp ψλ′ �= ∅}. (6.3)

Note that � is finite if � is.
Next, we construct an approximation to g� by means of a least-squares technique: we select

some appropriate set of points X̂, evaluate G(u(xi)) at each xi ∈ X̂ and use the adaptive Coarse–
to–Fine–Algorithm developed in [10] to obtain a configuration �̂ ⊆ � and the coefficients
{ĝλ}λ∈�̂ of the approximation ĝ(x) := ∑

λ∈�̂ ĝλψλ(x). The question of how to select the points
X̂ in an appropriate and constructive way to guarantee an efficient and fast iterative solution of
the least-squares problem has been answered in [10]: roughly, one needs a small fixed number
of evaluation points m̂ in each subinterval, depending on the degree of polynomial making up the
spline-wavelet ψλ.

Denoting by δ(�) the children of the highest-level-wavelets of a set �, our algorithm to evaluate
nonlinearities reads as follows.

Algorithm 6.1. [Least Squares Scheme for Evaluating Nonlinearities]

1. Fix a maximal configuration�, the coarsest level j0, the order m̂of the point representations,
and a thresholding parameter ε > 0. Create �̂j0 .

2. For each j = j0, . . . , perform the following steps.
(a) Create δ(�̂j ).

(b) Construct �̃j+1 := �̂j ∪ (δ(�̂j ) ∩ �).
(c) Compute {ĝj+1

λ }λ∈�̃j+1
that minimizes

∑
xi∈Xm

�̃j+1


G(u(xi)) −

∑
λ∈�̃j+1

ĝ
j+1
λ ψλ(xi)




2

. (6.4)

(d) Select �ε
j+1 := {λ ∈ δ(�̂j ) ∩ � : |̂gj+1

λ | ≥ ε}.
(e) If �ε

j+1 = ∅ stop, else let �̂j+1 = �̂j ∪ �ε
j+1.

Note that this approach differs from the one in [22,23]. In the above least-squares approach, the
construction of the wavelet configuration �̂ and the computation of the corresponding coefficients
{ĝλ} occur simultaneously: it creates a hierarchy of configurations �̂j0 ⊂ �̂j0+1 ⊂ . . . ⊆ �̂ by
using the coefficients on each level j to predict the significant ones on the next level j +1. The use
of the information about G(u) gained at each level might allow for a possible termination of the
algorithm at some early level before having computed the full configuration � so that #�̂ < #�.
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Note that the size of the trial configuration � may be overestimated by the algorithms described
in [23] since there � is guaranteed to be large enough to fulfill the approximation requirement,
but is not guaranteed to contain the smallest possible number of parameters.

A correction of the algorithmic drawbacks of [23] and [22] has been envisaged recently in [24].
The strategy there operates in a sweep from fine-to-coarse scales and is therefore opposite, in this
respect, to our least-squares approach, and also relies on reusing the information gained in the
analysis of each level.
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